Human Embryonic Stem Cells Develop Into Multiple Types of Cardiac Myocytes

نویسندگان

  • Jia-Qiang He
  • Yue Ma
  • Youngsook Lee
  • James A. Thomson
  • Timothy J. Kamp
چکیده

Human embryonic stem (hES) cells can differentiate in vitro, forming embryoid bodies (EBs) composed of derivatives of all three embryonic germ layers. Spontaneously contracting outgrowths from these EBs contain cardiomyocytes (CMs); however, the types of human CMs and their functional properties are unknown. This study characterizes the contractions and action potentials (APs) from beating EB outgrowths cultured for 40 to 95 days. Spontaneous and electrical field–stimulated contractions were measured with video edge-detection microscopy. -Adrenergic stimulation with 1.0 mol/L isoproterenol resulted in a significant increase in contraction magnitude. Intracellular electrical recordings using sharp KCl microelectrodes in beating EB outgrowths revealed three distinct classes of APs: nodal-like, embryonic atrial-like, and embryonic ventricular-like. The APs were described as embryonic based on the relatively depolarized resting membrane potential and slow AP upstroke. Repeated impalements of an individual beating outgrowth revealed a reproducible AP morphology recorded from different cells, suggesting that each outgrowth is composed of a predominant cell type. Complex functional properties typical of cardiac muscle were observed in the hES cell–derived CMs including rate adaptation of AP duration and provoked early and delayed afterdepolarizations. Repolarization of the AP showed a significant role for IKr based on E-4031 induced prolongation of AP duration as anticipated for human CMs. In conclusion, hES cells can differentiate into multiple types of CMs displaying functional properties characteristic of embryonic human cardiac muscle. Thus, hES provide a renewable source of distinct types of human cardiac myocytes for basic research, pharmacological testing, and potentially therapeutic applications. (Circ Res. 2003;93:32-39.)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization.

Human embryonic stem (hES) cells can differentiate in vitro, forming embryoid bodies (EBs) composed of derivatives of all three embryonic germ layers. Spontaneously contracting outgrowths from these EBs contain cardiomyocytes (CMs); however, the types of human CMs and their functional properties are unknown. This study characterizes the contractions and action potentials (APs) from beating EB o...

متن کامل

The Effect of Astrocyte-Conditioned Medium (ACM) and Retinoic Acid on Neural Differentiation of Mouse Embryonic Stem Cells

Purpose: The aim of this research was to study the properties of factors secreted from astrocyte cells in suspension medium in direct differentiation of mouse embryonic stem cells into neural cells. Materials and Methods: Royan B1 mouse embryonic stem (ES) cells were used in this experiment. For differentiation of Es cells into the neural cells, the astrocyte-condition medium (ACM) of mouse fe...

متن کامل

I-54: New Models for Human and Mouse Genetic

The possibility to reprogram somatic human cells will greatly and deeply change genetic approach and allow the development of new tools to study genetics diseases. Indeed, our ability to study human genetic diseases suffers from the lack of valid in vitro models. The latter should (i) be originating from human primary cells, (ii) be able to self-renew for a long time and (iii) be able to differ...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003